Javascript函数之深入浅出递归思想,附案例与代码!
递归函数的理解
1、生活中的递归
“递归”在生活中的一个典例就是“问路”。如图小哥哥进入电影院后找不到自己的座位,问身边的小姐姐“这是第几排”,小姐姐也不清楚便依次向前询问,问至第一排的观众后依次向后反馈结果,“我是第一排”,“我是第二排”,···,最终确定自己座位所在排数。
在这个过程中充分反应了“传递”(询问)和“回归”(反馈)的思想,故将这种现象称为“递归”。
function fn(n){
if(n === 1){
return 1;
}
return n + fn(n - 1);
}
fn(6);
计算过程: f(6) = 6 + f(5) f(6) = 6 + 5 + f(4) f(6) = 6 + 5 + 4 + f(3) f(6) = 6 + 5 + 4 + 3 + f(2) f(6) = 6 + 5 + 4 + 3 + 2 + f(1) f(6) = 6 + 5 + 4 + 3 + 2 + 1
由上可知递归函数的本质:
调用自身
递归函数的实现有两个要素:
终止条件
逐步靠近终止条件
案例中的终止条件是:当 n === 1 时,fn(1) === 1。若没有终止条件,函数会继续计算f(0) 、f(-1) 、f(-2) ··· 从而进入死循环,无法得出结果。
通过计算过程可以看出,函数依次计算f(6)、f(5)、f(4)、f(3)、 f(2)、f(1),很好的满足了第二个要素 逐步靠近终止条件。
递归函数的使用
通过以上讲解,想必已经了解递归函数的原理,
那么递归函数是如何写出来的呢?
如何利用递归函数解决实际问题呢?
实例探索递归函数的书写“套路”
步骤 1:找到终止条件,写给 if
数学知识 :n! = n * (n - 1) * (n - 2) * (n -3) * ··· * 3 * 2 * 1
n === 1;
时, return 1;
function fn(n){
if(n === 1){
return 1;
}
// 未完待续
}
数学知识 :n! = n * (n - 1)!
n! = n * (n - 1)!
和递归函数的本质(调用自身),可以得出函数的等价关系式为
f(n) = n * f(n - 1);
function fn(n){
if(n === 1){
return 1;
}
return n * fn(n - 1);
}
至此简单的递归函数便写出来了,递归函数最大的特点便是代码简洁(简洁到让人心虚)。
总结,递归函数的书写“套路”
1.找到终止条件,写给 if
2.找到函数的等价关系式,写给 return
递归函数的问题
递归 是为了将复杂问题简单化,提供解题思路,进而得到 “循环算法”
对于简单问题,一眼便能看出“循环算法”,但对于抽象问题,通常可以先采取 递归 思想,如:
例题:某人需要走上10级台阶,有两种走法,走法A:一步1个台阶;走法B:一步2个台阶。两种走法可以任意交替使用,问走上10级台阶共有多少种方法?
这个问题很难直接看出循环的解题思路,我们不妨从 递归 的角度尝试解决:
当走上第10级台阶只差最后一步时,存在有两种可能:
第1种:从 第8级 —> 第10级(一步2个台阶)
第2种:从 第9级 —> 第10级(一步1个台阶)
假设:从 第0级 —> 第8级,有 x
种走法;
1,1,1,1,1,1,2,2
1,1,1,1,1,2,1,2
1,2,1,1,1,2,2
1,2,1,2,2,2
·······
// 穷举不尽,共 x 种,每种走法的最后一步都是 2(个台阶)
y
种走法;1,1,1,1,1,1,1,2,1
1,1,2,1,1,2,1,1
1,2,1,2,2,1,1
1,2,2,2,2,1
·······
// 穷举不尽,共 y 种,每种走法的最后一步都是 1(个台阶)
那么,从 第0级 —> 第10级,共有 x + y
种走法。
故,10级台阶走法 = 9级台阶走法 + 8级台阶走法,即 f(10) = f(9) + f(8);
所以我们需要的函数关系式是 f(n) = f(n - 1) + f(n - 2);
接下来找 终止条件:
1级台阶时,走法只有1种(1步1台阶),是 n === 1;
时, return 1;
2级台阶时,走法只有2种(2次1步1台阶 或 1步2台阶),是 n === 2;
时, return 2;
由此可以写出递归函数
function fn(n){
if(n === 1 || n === 2){
return n;
}
return fun(n - 1) + fun(n - 2);
}
可见,在函数执行过程中重复调用了多次相同的函数(相同背景色),从而极大消耗了系统的性能。经过测试这个 递归函数 最多可计算至 f(45);
左右的结果(测试需谨慎),这便是 递归函数 存在的主要问题。
那么如何优化这个问题呢?
即,将 递归算法改为循环算法。
通过前面的推导我们知道 f(n) = f(n - 1) + f(n - 2);
1级台阶 ==> 走法:1 2级台阶 ==> 走法:2 3级台阶 ==> 走法:1 + 2 = 3 4级台阶 ==> 走法:2 + 3 = 5 5级台阶 ==> 走法:3 + 5 = 8 6级台阶 ==> 走法:5 + 8 = 13 7级台阶 ==> 走法:8 + 13 = 21 ······
function fn(n){
if(n === 1 || n === 2){
return n;
}
var left = 1; // 左边的数据
var right = 2; // 右边的数据
var sum = 0;
for(var i = 3 ; i <= n ; i++){ // 循环从第3项开始
sum = left + right; // 计算前一次左右数据的和
left = right; // 把前一次的right赋值给下一次的left
right = sum; // 把前一次的和赋值给下一次的right
}
return sum;
}
以上便是通过递归思想将抽象问题逐步简单化,从而得出循环算法的过程。
循环算法 解决了 递归 消耗系统性能的问题,可以计算任意数值。
(当数值太大超出JavaScript数值范围时,返回 Infinity
)
总结
1、递归结构简单,易理解,常用于将抽象问题简单化。
◆
原力计划
◆
你点的每个“在看”,我都认真当成了AI